Lake Osakis PAS Alternative Workshop

Time: 10am-2pm, Location: Osakis VFW

Attendees: Natalie, Peter, Jim, Joe, Steve, Drew, Brett, Mike, Paul, Mark, Emily, Terry, Stephanie, Janice, Ken, Bruce, Troy, Jason, Jerry, Randy, Beth, Joe, Susan, Danielle, David, Garret, Lucas, Adam, Tom, Gary, Shawn, Mike, Amber

Agenda

- 1. Introductions
- 2. PAS Study Background
 - a. Collaboration with USACE developed from project teams
 - b. Material accumulation focus in the area
 - c. Recent work
 - i. Houston engineering assembled data that was gathered
 - ii. Sub-bottom profiler was taken last summer
 - iii. Fair amount of phosphorus within the sediment
 - d. Lake Response Model
 - i. Model can be used to show existing condition but also evaluate the alternatives
 - ii. Helps predict what will happen within the alternatives developed at the meeting
 - iii. Hydrodynamic and water quality model
 - iv. QUESTION Can the model look at pollutants impact on fish for fish consumption?
 - 1. Can add in data to the model, won't be able to tell the level of pollutants in the fish
 - v. Elevated E-Coli being looked at to add to the model
 - vi. QUESTION Can model look at highwater levels?
 - 1. Yes, but need the data in order to input into the model.

3. Location

- a. Are the problems that we are seeing unique to specific portions of the lake?
 - i. Sedimentation is an issue throughout the whole of Lake Osakis, but seeing specific issues in Miller's Bay, the Sed Ponds/JD2 system.
- b. Where are the main concerns you are seeing?
 - i. Miller's Bay
 - ii. Northern arm of the lake, erosion
 - iii. Full Southern side of the lake, City and golf course are affected
 - iv. Faille Lake, sedimentation
 - v. Eastern side erosion

4. Goals

- a. Water quality and sedimentation Get off Impaired Waters List
 - i. JD2 authority Feasibility study in works
 - ii. Will need time, money and cooperation
 - iii. QUESTION Can internal loading itself be enough to get lake off impaired water list?

- b. Restore hydrology from altered state
 - i. Maintain water control level, rapid fluctuations
- c. Increase water storage and restore lake (15 ac-ft of storage as 10-year goal)
- d. Inlet restoration
- e. Sewer system drainage updated and checked, inspected
 - i. Too many campers
 - ii. Septic system compliance
- f. Control of invasive species
- g. Restore Crooked Lake Improve health of watershed/uplands
- h. Voluntary Compliance

5. Problems

- a. Septic system compliance
 - i. Sewer system around whole lake needs to be updated and checked
 - ii. Compliance is on the pumpers
- b. Farming Practices/Fertilizers feeding into the lake
- c. Construction done by private entities
 - i. Receive initial compliance information, but may not follow through
- d. Peat bog
 - i. Digging sediment ponds in peat bogs elevation of the lake = Peat sediment coming into the lake
- e. Reproduction of Walleye
 - i. Spawning is decreasing within the lake
- f. Ravine erosion

6. Objectives

- a. Lake Elevation/Water Storage
- b. Water Quality
- c. Inlets
 - i. Ravines
 - ii. Crooked Lake
 - iii. Peat bog
- d. Invasive Species
- e. Aquatic Life

7. Constraints

- a. Drainage Law
 - i. Need to be compliant with state drainage law 101E
 - ii. Would impact the work on JD2
- b. Funding
- c. Capacity of resources
 - i. Technical staff, contractors, engineers, etc
- d. Public Waters
 - i. Laws and permit needs in order to make modifications to lake and outlet
- e. Land owner buy-in
- f. Public Perception
 - i. Disconnect between who pays for the project and who benefits from the project

ii. Property owners on lake need to be aware and understand their influence/practices impact the lake

8. Opportunities

- a. SRWD/OLA education on different types of fertilizers that have lower water quality impacts
- b. 103E Statute Drainage Law
 - i. Alternative repair without needing to go through full improvement process
 - ii. Channel rehab
- c. Future/alternatives to the Sed Ponds
- d. Pencil Reeds
 - i. Reestablish in Miller's Bay and on southern end
- e. Redetermination of benefits and costs
 - i. Redistribute the costs of the project

9. Measures

- a. Please reference filled-in PowerPoint (Slide XX) for full list of measures
- b. Please reference the attached Excel document for the alternatives array and the measures identified as "priority" to include in alternatives.
- c. Structural
 - i. Restoring wetlands, creeks, drain tile
 - ii. Restoring Crooked Lake
 - iii. JD2 Ditch two-stage ditching,
 - iv. Sed Ponds stabilizing, expanding, abandonment
 - v. Lake outlet
 - vi. Remaindering of ditch systems primarily JD2
 - vii. Alternatives to
 - viii. Stormwater management (City of Osakis)
 - ix. Shoreline stabilization
 - x. In-Lake treatments
 - xi. Structural BMP for Ag owners buffer strips, sed basins,
 - xii. Sanitary pump station and holding tank
 - xiii. Restoration of Smith Lake, Nelson
- d. Non-Structural
 - i. Cover crop Ag land
 - ii. Public education
 - iii. Signage
 - iv. Inventory/monitoring of septic systems
 - v. Conservations easements
 - vi. Feasibility study for sanitary system around lake
 - vii. Public education for cost-share opportunities with SWCD
 - viii. Education on shoreline management including farmers
 - ix. Education on Best Management Practices (BMPs) for individual land owners land owners not going through proper permitting process to do work on land
 - x. Additional resources for County and SRWD staff to help enforce rules
 - xi. Lakeshore certification
- e. Priority Measures Identified
 - i. Lake Outlet Modification

- ii. Shoreline Stabilization
- iii. Wetland Restoration
- iv. Septic and Sanitary

10. Data Needs

- a. Shoreline survey help see level of shoreline erosion occurring
- b. Stormwater runoff
- c. Septic inspections
 - i. Failure rate by county
- d. Management of Wastewater System
 - i. Should be City data
 - ii. City has set up a way to help work the issues
 - iii. Agricultural impact on water quality
 - iv. Sed Ponds functionality
 - v. Inventory of all inlets
 - vi. Core sample study review

11. Next Steps

- a. Additional data gathering
- b. Input additional data and refine model
- c. Analysis of Alternatives Array